References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Edwards, C., Gilmore, C. J., Mackay, S. \& Stewart, N. (1995). CRYSTAN 6.3. A Computer Program for the Solution and Refinement of Crystal Structures. Mac Science, Japan.
Graham, D. E., Lamprecht, G. J., Potgieter, I. M., Roodt, A. \& Leipoldt, J. G. (1991). Trans. Met. Chem. 16, 193-195.
Lcipoldt, J. G., Basson, S. S., Bok, L. D. C. \& Gerber, T. I. A. (1978). Inorg. Chim. Acta, 26, L35-L37.
Leipoldt, J. G., Bok, L. D. C., Basson, S. S. \& Meyer, H. (1980). Inorg. Chim. Acta, 42, 105-108.
Leipoldt, J. G. \& Grobler, E. C. (1982). Inorg. Chim. Acta, 60, 141144.

MAC Science (1989). MXC Diffractometer Control Sofiware. MAC Science, Japan.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Varshavskii, Yu. S. \& Cherkasova, T. G. (1967). Russ. J. Inorg. Chem. 12, 894.
Yoshioka, H. \& Hirotsu, K. (1980). BOND. Osaka City University, Osaka, Japan.

Acta Cryst. (1997). C53, 1405-1407

trans-[Bis-2,6-(2-benzimidazolyl- κN^{2})-pyridine- κN]nitrobis(triphenylphosphineP)ruthenium(II) Perchlorate Ethanol Solvate

Jong Wan Lim, Hwan Jin Yeo and Jong Hwa Jeong

Department of Chemistry, Kyungpook National University, Taegu, 702-701, Korea. E-mail: jeongjh@bh.kyungpook.ac.kr
(Received 2 January 1997; accepted 22 April 1997)

Abstract

In the title compound, $\left[\mathrm{Ru}\left(\mathrm{NO}_{2}\right)\left(\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{5}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]-$ $\mathrm{ClO}_{4} \cdot \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$, the two phosphine ligands are in trans positions. The Ru atom and imidazolylpyridine moiety are almost coplanar, with the fused ring of the imidazolyl groups somewhat bent from the plane due to the steric hindrance of the phosphine phenyl groups. The nitro ligand is coordinated so that the NO_{2} group is rotated $40.5(1)^{\circ}$ from the imidazolylpyridine plane.

Comment

There has been considerable interest in transition metal complexes containing a nitro ligand because of their capability to transfer oxygen to a number of organic and inorganic substrates (Leising \& Takeuchi, 1987). Nitroruthenium complexes involving terpyridine (terpy) or bis(pyrazolyl)pyridine have been studied with respect to their reactivity and the coordination environment
around the central metal atom (Bailey \& Drago, 1987; Bessel, See, Jameson, Churchill \& Takeuchi, 1993; Leising, Kubow, Churchill, Buttrey, Ziller \& Takeuchi, 1990). The orientation of the NO_{2} plane is dependent on the meridional ligands. For example, the angles between the NO_{2} and meridional coordination planes are almost 90° in the Ru -nitro complex containing 2,6-bis(3,5-dimethylpyrazol-1-yl)pyridine (Bessel, See, Jameson, Churchill \& Takeuchi, 1993) and almost 0° in the complex containing 2,6-bis(pyrazol-1-yl)pyridine (Leising, Kubow, Churchill, Buttrey, Ziller \& Takeuchi, 1990).

We report here the orientation of the NO_{2} ligand in the title compound, (I), in which it is bound to the metal atom. The Ru atom is also coordinated by a pyridine ring carrying two benzimidazolyl groups rather

(I)
than substituted imidazole rings. An ORTEPII (Johnson, 1976) drawing of the molecule is shown in Fig. 1. The structure reveals that a bis(2-benzimidazolyl)pyridine (BIP) moiety, an NO_{2} and two triphenylphosphine $\left(\mathrm{PPh}_{3}\right)$ groups are bound to the Ru atom, with ClO_{4}^{-}as anion. The two phosphine ligands are in an almost trans arrangement, with a $\mathrm{P} 1-\mathrm{Ru}-\mathrm{P} 2$ angle of $178.79(8)^{\circ}$.

Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 40% probability level.

The Ru atom and the imidazolylpyridine moiety are coplanar within 0.077 (7) \AA and the fused rings of the imidazolyl groups are somewhat bent from the plane due to the steric hindrance of the PPh_{3} groups.

The nitro ligand is coordinated so that the $\mathrm{Ol}-$ N - O 2 plane is rotated $40.5(1)^{\circ}$ from the molecular plane defined by the Ru atom and the three heterocyclic rings. The contact distances of $\mathrm{H} 18 \cdots \mathrm{O} 1$, $\mathrm{H} 6 R \cdots \mathrm{O} 1, \mathrm{H} 2 \cdots \mathrm{O} 2$ and $\mathrm{H} 32 R \ldots \mathrm{O} 2$ are 2.474 (9), 2.773 (9), 2.709 (9) and 2.490 (9) \AA, respectively. This means that the orientation of the NO_{2} ligand is affected by the benzyl fragments of BIP and the PPh_{3} groups. The rotating angle of the $\mathrm{Ol}-\mathrm{N}-\mathrm{O} 2$ plane is in the midpoint of the range $\left(0-88^{\circ}\right)$ found in similar Ru complexes (Bessel, See, Jameson, Churchill \& Takeuchi, 1993; Leising, Kubow, Churchill, Buttrey, Ziller \& Takeuchi, 1990). The orientation of the NO_{2} plane is dependent on the meridional. Other geometric parameters are close to expected values allowing for experimental error.

Experimental

The title compound was prepared by the method used to synthesize trans- $\left[\mathrm{Ru}\left(\mathrm{NO}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right.$ (terpy) $] \mathrm{ClO}_{4}$ using BIP instead of terpy (Leising, Kubow, Churchill, Buttrey, Ziller \& Takeuchi, 1990). trans-[$\left.\mathrm{Ru}(\mathrm{BIP})\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}\right] \mathrm{ClO}_{4}$ was produced by addition to an ethanol solution of $\mathrm{Ru}\left(\mathrm{BIP}^{2}\right) \mathrm{Cl}_{3}$ in the presence of zinc powder. The title compound was prepared by reaction of NaNO_{2} with trans- $\left[\mathrm{Ru}(\mathrm{BIP})\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}\right] \mathrm{ClO}_{4}$. Crystals suitable for X-ray diffraction were obtained using a solvent pair of ethanol-acetone.

Crystal data

$\left[\mathrm{Ru}\left(\mathrm{NO}_{2}\right)\left(\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{5}\right)-\right.$
$\left.\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right] \mathrm{ClO}_{4} . \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
$M_{r}=1128.48$
Triclinic
$P \overline{1}$
$a=11.991(2) \AA$
$b=13.951(4) \AA$
$c=14.923(4) \AA$
$\alpha=96.02(2)^{\circ}$
$\beta=94.49(2)^{\circ}$
$\gamma=98.42(2)^{\circ}$
$V=2445(1) \AA^{\circ}$
$Z=2$
$D_{x}=1.533 \mathrm{Mg} \mathrm{m}$
D_{m} not measured

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=10.0-16.0^{\circ}$
$\mu=0.505 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Tetragonal prism
$0.50 \times 0.50 \times 0.45 \mathrm{~mm}$
Red-brown

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
empirical via four ψ scans (Fair, 1990)
$T_{\text {min }}=0.690, T_{\text {max }}=0.797$

6933 measured reflections 5731 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.164$
$S=1.069$
5725 reflections
647 parameters
H atoms: see below
3 standard reflections frequency: 120 min intensity decay: 0.03%
$n^{\prime}=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0991 P)^{2}\right.$
$+4.9903 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$ 。
$\Delta \rho_{\text {max }}=1.145 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.902 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crustallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Ru}-\mathrm{N} 2$	2.011 (6)	$\mathrm{Ni}-\mathrm{C} 7$	1.299 (9)
$\mathrm{Ru}-\mathrm{N} 6$	2.057 (6)	$\mathrm{Ni}-\mathrm{Cl}$	1.412 (9)
$\mathrm{Ru}-\mathrm{N} 3$	2.116 (6)	N2-C8	1.337 (9)
$\mathrm{Ru}-\mathrm{NI}$	2.134 (6)	N2-C12	1.365 (9)
$\mathrm{Ru}-\mathrm{Pl}$	2.407 (2)	N. $3-\mathrm{Cl} 3$	1.318 (9)
$\mathrm{Ru}-\mathrm{P} 2$	2.4 .32 (2)	$\mathrm{N} 3-\mathrm{C} 19$	1.413 (9)
$\mathrm{Pl}-\mathrm{Cl} 3 \mathrm{R}$	1.826 (7)	N4-C7	1.326 (8)
$\mathrm{Pl}-\mathrm{C} 7 R$	1.834 (8)	N4-C6	1.368 (10)
$\mathrm{Pl}-\mathrm{Cl} R$	1.839 (8)	N5-C13	1.347 (9)
$\mathrm{P} 2-\mathrm{C} 31 R$	1.834 (7)	$\mathrm{N} 5-\mathrm{Cl} 4$	1.374 (10)
$\mathrm{P} 2-\mathrm{C} 19 \mathrm{R}$	1.836 (8)	N6-OI	1.229 (8)
P2-C25R	1.845 (8)	$\mathrm{N} 6-\mathrm{O} 2$	1.245 (8)
N2-Ru-N6	177.6 (3)	N1-Ru-Pl	88.3 (2)
$\mathrm{N} 2-\mathrm{Ru}-\mathrm{N} 3$	78.0 (2)	N2-Ru-P2	89.4 (2)
$\mathrm{N} 6-\mathrm{Ru}-\mathrm{N} 3$	100.5 (2)	N6-Ru-P2	92.4 (2)
$\mathrm{N} 2-\mathrm{Ru}-\mathrm{Ni}$	77.0 (2)	N3-Ru-P2	87.9 (2)
N6-Ru-N1	104.5(2)	$\mathrm{N} 1-\mathrm{Ru}-\mathrm{P}$?	$91.8(2)$
N3-Ru-N1	155.0(2)	$\mathrm{Pl}-\mathrm{Ru}-\mathrm{P} 2$	178.7918
$\mathrm{N} 2-\mathrm{Ru}-\mathrm{Pl}$	89.4 (2)	$\mathrm{Ol}-\mathrm{N} 6-\mathrm{O} 2$	118.2 (6)
N6-Ru-Pl	88.8 (2)	$\mathrm{Ol}-\mathrm{N} 6-\mathrm{Ru}$	120.3 (5)
N3-Ru-Pl	91.5 (2)	$\mathrm{O} 2-\mathrm{N} 6-\mathrm{Ru}$	121.5 (5)

The enclosed solvent molecule was highly disordered and ambiguous. The molecule was therefore refined isotropically as $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} ; \mathrm{H}$ atoms on the solvent molecule were not located. The ClO_{+}anion was also disordered and refined isotropically with occupancies of 0.7 and 0.3 . The maximum residue had an electron density of $1.145 \mathrm{e}^{-3}$ at $1.3 \AA$ from the Ru atom.

Data collection: CAD-4 Softu'are (Enraf-Nonius, 1989). Cell refinement: CAD-4 Softurare. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL93.

This research has been supported financially by the Basic Science Research Institute Program of the Ministry of Education in Korea.

[^0]
References

Bailey, C. L. \& Drago, R. S. (1987). J. Chem. Soc. Chem. Commun. pp. 179-180.

Bessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. \& Takeuchi, K. J. (1993). J. Chem. Soc. Dalton Trans. pp. 1563-1576.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Leising, R. A., Kubow, S. A., Churchill, M. R., Buttrey, L. A., Ziller, J. W. \& Takeuchi, K. J. (1990). Inorg. Chem. 29, 1306-1312.

Leising, R. A. \& Takeuchi, K. J. (1987). Inorg. Chem. 26, 4391-4393.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1997). C53, 1407-1409

Bis(piperidinium) Tetrachloromercurate

Roland Spengler, ${ }^{,}$Fatma Zouari, ${ }^{b}$ Abdelhamid Ben Salah ${ }^{b}$ and Hans Burzlaff ${ }^{a}$
${ }^{a}$ Institut für Angewandte Physik, Lehrstuhl für Kristallographie, Universität Erlangen-Nürnberg, Bismarckstr. 10, D-91054 Erlangen, Germany, and ${ }^{b}$ Faculté des Sciences, Département de Chimie, Université de Sfax, Rte. de Soukra, 3038 Sfax, Tunisia. E-mail: roland.spengler@krist.unierlangen.de
(Received 14 April 1997; accepted 6 June 1997)

Abstract

The title compound, $\left(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}\right)_{2}\left[\mathrm{HgCl}_{4}\right]$, contains piperidinium cations and tetrachloromercurate anions, which are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ bonds via the $\mathrm{Cl} 1, \mathrm{Cl} 2$ and Cl 3 atoms into a two-dimensional network in the ($\overline{1} 01$) plane through the origin. The $\mathrm{Hg}-\mathrm{Cl}$ bond lengths lie between 2.431 (3) and 2.515 (2) \AA.

Comment

The reaction of substituted ammonium halides with metal halides leads to a series of compounds of the general formula ($\left.R_{x} \mathrm{NH}_{4-x}\right)_{2} M X_{4}$, where R is an aliphatic or aromatic hydrocarbon, M is a divalent metal and $X=\mathrm{Cl}$, Br or I .

These compounds show interesting structural and physical properties such as ferroclectricity, successive phase transitions and incommensurate phases, e.g. $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{ZnCl}_{4}\right]$ (cf. Mashiyama, 1980). An example of interesting physical properties is the compound $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\mathrm{MnCl}_{4}\right]$, which was used by Dupas \& Renard (1973) and Birgeneau, Shirane \& Kitchens (1974) for studying low-dimensional magnetism.

Another point of interest is the investigation of the coordinative environment of $\mathrm{Hg}^{\text {II }}$ because of the closed shell and relatively large coordination distances. Coordination numbers can be three, four (tetrahedral) and five (trigonal bipyramidal); in the special case of $\left(\mathrm{RNH}_{3}\right) \mathrm{Hg} X_{4}$, perovskite-like structures with $M X_{6}$ octahedra are found (Ben Salah, Daoud, Bats \& Fuess, 1982).

(I)

The title compound, (I), contains two piperidinium cations and one tetrachloromercurate anion in the asymmetric unit (Fig. 1). The Hg atom is surrounded by four Cl atoms forming a slightly distorted tetrahedron. Three of the Cl atoms are connected to piperidinium cations by hydrogen contacts in the range from 2.27 to $2.47 \AA$, the $\mathrm{Cl} \cdots \mathrm{N}$ distances vary between 3.219 (4) and 3.395 (4) Å.

Fig. 1. Formula unit of the title compound in the crystal. Displacement ellipsoids correspond to 35% probability.

The base of the tetrahedron $(\mathrm{Cl} 1, \mathrm{Cl} 2, \mathrm{Cl} 3)$ lies approximately in the glide plane n, i.e. $\left(x \frac{1}{4} y\right)$, as do the atoms $\mathrm{H} 3-\mathrm{N} 2-\mathrm{H} 4$, setting up a zigzag chain in [101] direction: $\mathrm{Cl} 3-\mathrm{Hg}-\mathrm{Cl}-\mathrm{H} 4-\mathrm{N} 2-\mathrm{H} 3-\mathrm{Cl} 3-$ $\mathrm{Hg}-$, and so on. The chain is augmented to a twodimensional network close to the plane ($\overline{1} 01$) by Hl $\mathrm{N} 1-\mathrm{H} 2$, which connects tetrahedra related by the centres of symmetry at $\left(0 \frac{1}{2} 0\right)$ and $\left(\frac{1}{2} \frac{1}{2} 0\right)$, thus resulting in the translational repetition in the [010] direction (see Fig. 2 and Table 2). The hydrogen-bonding parameters are in good agreement with other experimental data (Ben

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: KH1147). Services for accessing these data are described at the back of the journal.

